当前位置: 首页 > 新闻资讯 > 行业资讯

电力线路工程测量LIDAR技术应用

发布日期:2018-06-22 00:00 浏览量:9546

  LIDAR技术可获取各种地表数据。它发射的激光能穿透地面的植被,在剔除地面植被和地物的数据后,就可以生成地表的数字高程模型DEM数据。利用DEM数据及通过差分GPS和INS得到的航空数码影像的外方位元素,对航空数码影像进行正射纠正,可以生成正射影像图。还可以对地面的地物、道路、植被等信息进行分类提取。LIDAR技术测量只需要做少量的地面控制点和少量的外业调绘工作。LIDAR技术不需要做航测外控点测量,只需在利用LIDAR技术进行测量时,在地面做少量的基站。LIDAR技术能获取地物、植被的数据,还可以直接提取所需要的交叉跨越(道路、河流、电力线、通信线等)、房屋、独立地物等信息。LIDAR技术具有如下特点:

  (1)主动式遥感系统:它由机载激光扫描仪发射激光,接收地面反射回来的激光。激光脉冲信号能部分穿透植被,可以同时获取地面和地物数据。

  (2)高效率:LIDAR技术采集高程点的密度大,能够迅速采集大量的高程数据。LIDAR数据后处理工作可以自动或半自动将LIDAR点云数据转换为GIS数据。

  (3)高精度:激光脉冲不易受阴影、太阳光角度的影响,高程精度不受航高的限制,它的平面精度可以达到亚米级,高程精度可以达到10 cm左右。

  (4)采集的信息丰富:LIDAR技术可以获得地面和地物三维坐标,通过滤波处理,可以得到我们想要的地面、地物、植被的数据。


  1 传统测量技术应用

  在传统电力线路工程勘测设计中,多采取工程测量和航空摄影测量的方法进行。工程测量方法测量的地面信息精度高,但外业工作量大,测量的工期长,而且不利于勘测设计的一体化与优化设计。而利用传统航空摄影测量进行电力线路勘测设计,不仅需要进行大量的GPS外控点测量,还需要进行大量的野外调绘工作,航测的内业时间长,勘测设计的成本很高,工期偏长。而且传统的航空摄影测量在测量植被厚的隐秘地区时,测量的高程精度很低,影响电气专业人员准确排杆;传统的航空摄影测量方法也不能生成准确的塔基断面图。所以,采用传统测量技术进行电力线路工程勘测设计,获得的勘测成品精度较低,内、外业工作量大,勘测设计工期长,不利于勘测设计优化,不利于降低工程投资。


  2 LIDAR技术应用方法及流程探讨

  利用LIDAR技术进行电力线路的勘测设计具有很大的优越性。LIDAR技术只要做少量的GPS控制点和少量的调绘工作,缩短了勘测设计的工期,减少了勘测设计的成本。LIDAR技术的激光能穿透植被,得到地面数据,这样就能进行隐秘地带的测量。对LIDAR数据进行处理后,可生成正射影像图,进而生成带电力线路路径的三维数字地面模型图,可以方便在上面进行线路路径选择。确定了线路路径后,可以生成线路平断面图,再生成塔基断面图,便可进行一次性勘测设计,能让勘测设计一体化,大大地缩短了勘测设计的周期,减少了勘测设计成本,并且能进行优化设计,节省工程投资。


  (1)LIDAR技术外业航飞。

  首先做基站点,基站点要分布合理,保证航飞时飞机30km内至少有一个基站。基站需要选在开阔、交通便利的地方,没有树木、房屋等挡住卫星信号,周围无电子干扰源,不能有大片水面或其他反射面。基站最好事先进行高程、坐标的联系测量,便于以后进行坐标转换。在进行外业测量的时候,应注意航带是要有一定的重叠度,要注意LIDAR系统的以下参数的选用如激光波长、最大重复脉冲频率、脉冲回波?录模式、功率、光斑尺寸、扫描角、扫描模式等。


  (2)LIDAR数据内业处理。

  先进行异常点的剔除,在LIDAR数据中有些数据明显不合理,要将它剔除,例如:经过多重反射回来的数据、空中飞行物反射的数据等。再进行坐标转换,GPS接收、解算的均是WGS84坐标,而我们常用的一般为1954北京坐标,要将WGS84坐标转换成1954北京坐标,一般要联测3个以上的54坐标控制点,进行七参数坐标转换。高程系统一般与平面坐标同时处理,将大地高转换成正高。再进行航带合并,进行航飞时经常有多条航带,这些航带必须有(10%~20%)的重叠度,要将不同航带的LIDAR原始数据进行合并,按一定的顺序合并成一个整体。

  内业数据处理最重要的步骤是LIDAR数据的滤波。目前可采用芬兰公司的TerraSolid商业软件来实现LIDAR数据的滤波,对数据进行分类和提取。TerraSolid在MicroStation平台上运行,利用瑞典Axelsson等人提出的分类和提取算法,包括TerraScan(用于数据分类提取)、TerraModeler(用于生成和处理各种面)、TerraPhoto(用于处理原始影像)等多个模块。此软件是目前比较成熟的LIDAR数据处理软件,但对复杂建筑,还需要人工手动处理。此软件可以进行机载激光扫描数据的滤波,将地面数据和地物数据进行分层,再将机载激光扫描数据进行无缝拼接(在这里要消除航带间的系统误差和随机误差),生成DEM数据,并将DEM数据进行分层或合并输出。接着进行正射影像图和三维立体模型数据的生成,将已有的电力线数据、协议区数据、与电力线路路径有关的拟建、在建项目等相关数据输入,一起生成正射影像图和三维立体模型数据。


  (3)电力线路路径优化。

  以线路电气专业人员为主,在结构、测量、地质、水文等专业人员的配合下,进行电力线路的路径选择和优化。在LIDAR数据生成的正射影像图和三维立体模型图中,设计人员可以在图上看到全局的真实情况,能很容易地避开不利的因素,得到合理的线路路径。由于LIDAR技术能对隐秘地带进行测量,能比较准确地获得每个塔位的位置和高程,设计人员在选择路径时,可考虑塔位的具体情况,在设计时能做到线中有位、线位结合,能得到最优的线路路径。


  (4)确定线路杆塔位置。

  在线路的路径基本确定以后,就可以生成线路的平断面图,也可以生成风偏点。美国的海拉瓦平台和我国的适普软件能较好地做到这些功能。由于LIDAR技术能穿透植被,建立的地面、地物高程模型比较准确,生成的平断面图也比较准确,线路设计人员可准确地确定杆塔位置。


  (5)生成塔基断面图及三维立体模型。

  在杆塔位置确定以后,可以生成较准确的塔基断面图。设计人员可以检查每一个塔位的地理情况,如果不合适,还可以进行塔位的调整。如果找不到合适的塔位,还可以将线路路径进行调整。接着可制作带塔位的线路路径三维立体模型。


  (6)外业定位放样。

  确定了线路路径、杆塔位置以后,就可以利用RTK(实时动态)GPS进行外业定位放样。此阶段,要注意检核危险断面点、高等级电力线、通讯线、重要跨越、隐秘地带的高程、塔基断面等,如,有出入的地方,要及?r改正,并反馈给设计人员。


  3 应用实例

  在某500 kV线路工程中,应用机载激光雷达技术进行优化选线,取得了预期的效果,与初设相比,缩短了线路长度1 km,减少了交叉跨越3处,减少了占用森林、农田面积56亩,减少了房屋的拆迁4000 m2,节约了工程投资555万元,切实达到了线路路径优化的目的。


  4 LIDAR技术的误差分析

  进行了LIDAR系统的完善校正以后,机载LIDAR的定位精度是由GPS的定位精度、姿态测量装置的量测精度、激光测距仪的测距精度和扫描角的测量精度决定的。系统中任何一种传感器精度的降低,都会导致系统定位精度的下降。误差公式如下。

  在飞行高度小于600 m、地面坡度小于30°的情况下,INS的姿态测量精度对测距误差的贡献程度要低于GPS的定位精度对测距误差的贡献程度。随着飞行高度、地面坡度的增加,姿态测量精度对测距误差的贡献也就逐渐增加而超过GPS定位精度对测距误差的贡献。因此,在低空飞行时主要是要设法提高GPS的定位精度,而高空飞行时则必须有一个高精度的姿态测量装置。

  在某高压线路工程中,使用4台天宝GPS 5700,用运五飞机进行航飞,利用芬兰公司的TerraSolid商业软件进行LIDAR数据处理,并对测量结果进行了精度分析。


  5 结语

  利用LIDAR技术进行电力线路的勘测设计,只需做少量的地面控制点和少量的外业调绘工作,能提高隐秘地带测量的高程精度,缩短了勘测设计的周期,并且可以实现勘测设计一体化。可方便地进行电力线路工程优化选线,效率更高,操作更简便。利用LIDAR技术生成的三维场景,可以进行全线漫游及多视角观察,设计人员能更好地进行优化设计,对地物的判断、空间位置的确定更准确、便捷,能更好地避让重要地物,更合理地选择线路路径和杆塔位置。


猜你喜欢:

地面LIDAR在地籍测量中的应用

机载LIDAR内业数据处理技术


版权声明:文章来源于网络,登载此文出于传递更多信息之目的,版权归原作者及刊载媒体所有,如本文中图片或文字侵犯您的权益,请联系我们。

飞燕航空遥感公众号二维码.jpg


猜你喜欢

相关设备
推荐服务
相关案例
新闻资讯

联系方式

电话:025-83216189

邮箱:frank.zhao@feiyantech.com

地址:江苏省南京市玄武区红山街道领智路56
号星河World产业园3号楼北8楼

微信公众号

总经理微信

025-83216189